Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Di-tert-butyl ketone hydrazone and di-tert-butyl ketone triphenylphosphoranylidenehydrazone

Claude Villiers, Pierre Thuéry* and Michel Ephritikhine

CEA/Saclay, DSM/DRECAM/SCM (CNRS URA 331), Bâtiment 125, 91191 Gif-sur-
Yvette, France
Correspondence e-mail: pierre.thuery@cea.fr
Received 10 February 2006
Accepted 8 March 2006
Online 31 March 2006
Reaction of di-tert-butyl ketone with hydrazine hydrate gives di-tert-butyl ketone hydrazone, $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}$, which is dimerized by double hydrogen bonding in the solid state. Further reaction of this compound with dibromotriphenylphosphorane gives di-tert-butyl ketone triphenylphosphoranylidenehydrazone, $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{P}$, in the structure of which double chains parallel to the c axis are formed through weak $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ stacking interactions. The hydrazone group is nearly planar in both cases. In the second compound, one of the aromatic rings is nearly coplanar with the hydrazone moiety, indicating possible π-conjugation.

Comment

To date, the highly sterically crowded alkene tetra-tert-butylethylene has not been synthesized, in spite of many attempts using various methods, such as the McMurry coupling reaction (Ephritikhine \& Villiers, 2004), Barton's extrusion process (Barton et al., 1974) and reactions exploiting other possible pathways (Sulzbach et al., 1996). During our investigations into the McMurry reaction, we have particularly studied the carbonyl coupling of benzophenone and di-tert-butyl ketone with the $M \mathrm{Cl}_{4} / M^{\prime}(\mathrm{Hg})$ system $\left(M / M^{\prime}=\mathrm{U} / \mathrm{Na}, \mathrm{U} / \mathrm{Li}\right.$ or $\left.\mathrm{Ti} / \mathrm{Li}\right)$ (Ephritikhine \& Villiers, 2004). During this work, we have prepared di-tert-butyl ketone hydrazone, (I), and the new

(I)

(II)
compound di-tert-butyl ketone triphenylphosphoranylidene hydrazone, (II), by analogy with the synthesis reported for the two corresponding benzophenone derivatives (Barton et al., 1974; Bestmann \& Fritzsche, 1961). The crystal structure of benzophenone triphenylphosphoranylidenehydrazone, (III),
has been reported previously (Bethell et al., 1992). Compound (II) could not be transformed into tetra-tert-butylethylene.

The asymmetric unit in (I) contains one hydrazone molecule. The $\mathrm{C} 1=\mathrm{N} 2$ and $\mathrm{N} 1-\mathrm{N} 2$ bond lengths (Table 1) are in agreement with the mean values reported for similar hydrazones in the Cambridge Structural Database (CSD, Version 5.27; Allen, 2002), which are 1.282 (11) and 1.38 (3) \AA, respectively. The $\mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 1-\mathrm{C} 6$ bond lengths and the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$ angle are also in agreement with the mean values for similar di-tert-butyl-substituted $s p^{2}$-hybridized C atoms reported in the CSD, which are 1.56 (5) \AA and 123 (3) ${ }^{\circ}$. The value of the $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$ angle is lower by about 11° than those of the other two angles around C 1 , which is likely due to the minimal crowding in the corresponding sector, atom N 1 being on the same side as C 2 . The five atoms $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 1, \mathrm{C} 2$ and C6 define a plane with an r.m.s. deviation of $0.005 \AA$. Centrosymmetric dimers are formed through double hydrogen bonding between the $\mathrm{N}-\mathrm{NH}_{2}$ groups of two neighbouring molecules, with the formation of a sixmembered ring (Fig. 1 and Table 2).

The asymmetric unit in (II) contains two independent but nearly identical molecules, denoted A and B (molecule A is represented in Fig. 2). These two molecules fit to one another with an overall r.m.s. deviation of $0.143 \AA$ (the largest deviations, up to $0.29 \AA$, are those of atoms in the tert-butyl groups and aromatic rings) (OFIT in SHELXTL; Bruker, 1999). The $\mathrm{C} 1=\mathrm{N} 2$ bond lengths [Table 3; mean value 1.2905 (15) \AA], as well as the angles around C 1 , match those in (I), but the $\mathrm{N} 1-$ N 2 distances [mean value 1.4205 (5) \AA] are slightly larger than those in compounds (I) and (III) $[1.388$ (4) \AA] and are also larger than the mean value for $\mathrm{N}-\mathrm{N}$ bond lengths in triphenylphosphoranylidene hydrazone $\mathrm{C}=\mathrm{N}-\mathrm{N}=\mathrm{P}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ groups reported in the CSD [1.384 (19) \AA]. This may be due to the crowding induced by the simultaneous presence of tert-butyl groups and aromatic rings in (II). However, the mean $\mathrm{P} 1=\mathrm{N} 1$ bond length of 1.6017 (9) \AA is slightly shorter than the mean value of 1.616 (13) \AA from the CSD and the value of 1.606 (3) \AA in (III). These bond lengths indicate the presence of double bonds between C 1 and N 2 and between P1 and N1. However, their slight deviation from the values tabulated for single and double bonds has been considered as

Figure 1
A view of (I), showing the atom-numbering scheme. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are related by the symmetry operator $(-x,-y,-z)$.
possible evidence of π-conjugation over the whole of the triphenylphosphoranylidene hydrazone moiety (Bethell et al., 1992). This moiety adopts a trans geometry with respect to the central $\mathrm{N} 1-\mathrm{N} 2$ bond in (II), as is usual in such compounds (Bethell et al., 1992; Minutolo et al., 1999).

The group defined by atoms $\mathrm{P} 1, \mathrm{~N} 1, \mathrm{~N} 2, \mathrm{C} 1, \mathrm{C} 2$ and C 6 is close to planarity in both molecules of (II), with r.m.s. deviations of 0.010 and $0.024 \AA$ and $\mathrm{P} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$ torsion angles of 179.55 (14) and 175.93 (14) ${ }^{\circ}$ in molecules A and B, respectively. One of the aromatic rings in both molecules (atoms C10-C15) is nearly coplanar with the triphenylphosphoranylidene hydrazone mean plane, with dihedral angles of $8.70(12)$ and $2.78(12)^{\circ}$ in molecules A and B,

Figure 2
A view of molecule A in (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3
A view of (II), showing the double chains along the c axis. $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ stacking interactions are represented by dashed and dotted lines, respectively. Displacement ellipsoids are drawn at the 30% probability level.
respectively (but with, however, out-of-plane displacements as large as $0.4 \AA$). Such a geometry has previously been observed in a related triphenylphosphoranylidene hydrazone compound, (2,4-cyclopentadien-1-ylidenehydrazono)triphenylphosphorane, (IV), and considered as indicative of the possibility of π-conjugation between the two fragments, which was supported by the corresponding $\mathrm{P}-\mathrm{C}$ bond length being slightly smaller than those of the other two, by about 0.011 A (Minutolo et al., 1999). The P1-C10 bonds in (II) are also slightly shorter than $\mathrm{P} 1-\mathrm{C} 16$ and $\mathrm{P} 1-\mathrm{C} 22$, by about $0.01-$ $0.02 \AA$, which confirms the previous observation. However, the $\mathrm{C}-\mathrm{N}, \mathrm{N}-\mathrm{N}, \mathrm{P}-\mathrm{N}$ and $\mathrm{P}-\mathrm{C}$ bonds in (II) are all longer, by $0.01-0.05 \AA$, than their counterparts in (IV) (the largest difference corresponds to $\mathrm{N}-\mathrm{N}$), which may partly be due to the data collection temperature difference of 98 K , but also to the presence in (IV) of a Cp ring instead of the two tert-butyl groups in (II), with possible additional conjugation effects. The aromatic $\mathrm{C}-\mathrm{C}$ bond lengths in (II) are in the usual range in all three rings.

The aromatic rings in (II) are involved in several weak intermolecular interactions. $\pi-\pi$ stacking interactions are possibly present between rings $\mathrm{C} 10-\mathrm{C} 15$ (centroid Cg 1) and C16-C21 (centroid $C g 2$) of molecules related by a glide plane for both A and B molecules $\left[C g 1 A \cdots C g 2 A^{\mathrm{i}}=3.76 \AA\right.$, dihedral angle $=7.0^{\circ}$, centroid offset $=1.65 \AA$ and shortest interatomic contact $=3.26 \AA$ for A molecules; $C g 1 B \cdots C g 2 B^{\mathrm{i}}=3.64 \AA$, dihedral angle $=6.5^{\circ}$, centroid offset $=1.22 \AA$ and shortest interatomic contact $=3.36 \AA$ for B molecules; symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$]. Although the shortest interatomic contacts are shorter than twice the out-of-plane van der Waals radius of C (1.7 Å; Bondi, 1964), these interactions are weak at best, due to the large offset values.

Three significant $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are also present. One of them links molecules A and B in the asymmetric unit $\left(\mathrm{H} 13 A \cdots C g 1 B=2.74 \AA\right.$ and $\mathrm{C} 13 A-\mathrm{H} 13 A \cdots C g 1 B=153^{\circ}$) and the other two involve two sets of adjacent A or B molecules $\left[\mathrm{H} 20 A \cdots C g 3 A^{\mathrm{ii}}=2.68 \AA\right.$ and $\mathrm{C} 20 A-\mathrm{H} 20 A \cdots$ $C g 3 A^{\text {ii }}=154^{\circ} ; \mathrm{H} 20 B \cdots C g 3 B^{\mathrm{ii}}=2.60 \AA$ and $\mathrm{C} 20 B-\mathrm{H} 20 B \cdots$ $C g 3 B^{\mathrm{ii}}=147^{\circ} ; C g 3$ is the centroid of the C22-C27 ring; symmetry code: (ii) $x, \frac{3}{2}-y, z+\frac{1}{2}$]. Molecule A thus acts as a hydrogen-bond donor to two neighbouring molecules and as an acceptor from one, whereas molecule B acts as a single donor and double acceptor. These interactions result in double chains of A and B molecules running along the c axis (Fig. 3).

Experimental

Reaction of di-tert-butyl ketone ($5.70 \mathrm{~g}, 0.04 \mathrm{~mol}$) with hydrazine hydrate ($6 \mathrm{ml}, 0.12 \mathrm{~mol}$) in diethylene glycol (14 ml) gave compound (I) $(5.90 \mathrm{~g})$ in 94% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum of (I) in CDCl_{3} is identical to that described previously (Hartzler, 1971). Reaction of (I) $(1.56 \mathrm{~g}, 0.01 \mathrm{~mol})$ with dibromotriphenylphosphorane (4.22 g , $0.01 \mathrm{~mol})$ gave compound (II) (2.50 g) in 60% yield. ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08\left(s, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 1.56\left(s, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right), 7.33-7.51$ ($m, 9 \mathrm{H}$, ortho- and para $-\mathrm{Ph}_{3} \mathrm{P}$), 7.61-7.74 ($m, 6 \mathrm{H}$, meta- $-\mathrm{Ph}_{3} \mathrm{P}$). Single crystals of both compounds were obtained by slow evaporation of pentane solutions.

Compound (I)

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}$
$M_{r}=156.27$
Monoclinic, $P 2_{1} / c$
$a=11.5299(8) \AA$
$b=8.0975(4) \AA$
$c=10.8937(8) \AA$
$\beta=101.111(3)^{\circ}$
$V=998.01(11) \AA^{\circ}$
$Z=4$

Data collection

Nonius KappaCCD area-detector
diffractometer
φ and ω scans
23020 measured reflections
1884 independent reflections
1717 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.03$
1884 reflections
112 parameters
H atoms: see below
$D_{x}=1.040 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 23020 reflections
$\theta=3.1-25.7^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Irregular, colourless
$0.23 \times 0.19 \times 0.16 \mathrm{~mm}$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=25.7^{\circ}$
$h=-14 \rightarrow 13$
$k=-9 \rightarrow 0$
$l=0 \rightarrow 13$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0544 P)^{2} \\
&+0.3197 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0646 P)^{2}\right. \\
& +1.2906 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.31 \text { e } \AA^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.118$
$S=0.99$
9059 reflections
553 parameters

Table 1

Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{N} 1-\mathrm{N} 2$	$1.3992(13)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.5585(14)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.2864(14)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.5504(15)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$	$123.28(9)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 6$	$112.76(9)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$123.39(9)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$123.83(9)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.930(15)$	$2.230(15)$	$3.0937(13)$	$154.1(12)$

Symmetry code: (i) $-x,-y,-z$.

Compound (II)

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{P}$
$M_{r}=416.52$
Monoclinic, $P 2_{1} / c$
$a=29.1768(16) \AA$
$b=11.6848(7) \AA$
$c=14.3768(6) \AA$
$\beta=103.243(3)^{\circ}$
$V=4771.1(4) \AA^{3}$
$Z=8$
$D_{x}=1.160 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=416.52$
Monoclinic, $P 2_{1} / c$
$a=29.1768$ (16) A
$c=14.3768$ (6) \AA
$\beta=103.243(3)^{\circ}$
$V=4771.1\left(4\right.$ A 3
$Z=8$
Mo $K \alpha$ radiation
Cell parameters from 122758 reflections
$\theta=2.9-25.7^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Platelet, colourless
$0.17 \times 0.15 \times 0.10 \mathrm{~mm}$
Data collection
Nonius KappaCCD area-detector
\quad diffractometer
φ and ω scans
122758 measured reflections
9059 independent reflections
6960 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.7^{\circ}$
$h=-35 \rightarrow 34$
$k=-14 \rightarrow 0$
$l=0 \rightarrow 17$

H -atom parameters constrained
Table 3
Selected geometric parameters ($\AA,^{\circ}$) for (II).

$\mathrm{P} 1 A-\mathrm{N} 1 A$	$1.6025(16)$	$\mathrm{P} 1 B-\mathrm{N} 1 B$	$1.6008(16)$
$\mathrm{P} 1 A-\mathrm{C} 10 A$	$1.8030(18)$	$\mathrm{P} 1 B-\mathrm{C} 10 B$	$1.8006(18)$
$\mathrm{P} 1 A-\mathrm{C} 16 A$	$1.811(2)$	$\mathrm{P} 1 B-\mathrm{C} 16 B$	$1.8114(19)$
$\mathrm{P} 1 A-\mathrm{C} 22 A$	$1.8214(19)$	$\mathrm{P} 1 B-\mathrm{C} 22 B$	$1.8212(19)$
$\mathrm{N} 1 A-\mathrm{N} 2 A$	$1.421(2)$	$\mathrm{N} 1 B-\mathrm{N} 2 B$	$1.420(2)$
$\mathrm{C} 1 A-\mathrm{N} 2 A$	$1.292(2)$	$\mathrm{C} 1 B-\mathrm{N} 2 B$	$1.289(2)$
$\mathrm{C} 1 A-\mathrm{C} 2 A$	$1.552(3)$	$\mathrm{C} 1 B-\mathrm{C} 2 B$	$1.555(3)$
$\mathrm{C} 1 A-\mathrm{C} 6 A$	$1.548(3)$	$\mathrm{C} 1 B-\mathrm{C} 6 B$	$1.552(3)$
$\mathrm{P} 1 A-\mathrm{N} 1 A-\mathrm{N} 2 A$	$109.19(12)$	$\mathrm{P} 1 B-\mathrm{N} 1 B-\mathrm{N} 2 B$	$109.58(12)$
$\mathrm{N} 1 A-\mathrm{N} 2 A-\mathrm{C} 1 A$	$119.47(16)$	$\mathrm{N} 1 B-\mathrm{N} 2 B-\mathrm{C} 1 B$	$119.41(16)$
$\mathrm{N} 2 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	$123.44(17)$	$\mathrm{N} 2 B-\mathrm{C} 1 B-\mathrm{C} 2 B$	$123.49(17)$
$\mathrm{N} 2 A-\mathrm{C} 1 A-\mathrm{C} 6 A$	$112.72(17)$	$\mathrm{N} 2 B-\mathrm{C} 1 B-\mathrm{C} 6 B$	$112.55(17)$
$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{C} 6 A$	$123.80(16)$	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 6 B$	$123.95(16)$

The two H atoms bound to N 1 in (I) were found in a difference Fourier map and they were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N} 1)$. All other H atoms in both compounds were introduced at calculated positions as riding atoms, with $\mathrm{C}-\mathrm{H}$ bond lengths of 0.93 (aromatic $\mathrm{CH})$ or $0.96 \AA\left(\mathrm{CH}_{3}\right)$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{CH})$ or $1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$.

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: HKL2000 (Otwinowski \& Minor, 1997); data reduction: HKL2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3003). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Barton, D. H. R., Guziec, F. S. \& Shahak, I. (1974). J. Chem. Soc. Perkin Trans. 1, pp. 1794-1799.
Bestmann, H. J. \& Fritzsche, H. (1961). Chem. Ber. 94, 2477-2485.
Bethell, D., Brown, M. P., Harding, M. M., Herbert, C. A., Khodaei, M. M., Rios, M. I. \& Woolstencroft, K. (1992). Acta Cryst. B48, 683-687.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Ephritikhine, M. \& Villiers, C. (2004). Modern Carbonyl Olefination: Methods and Applications, edited by T. Takeda, pp. 223-285. Weinheim: Wiley-VCH.
Hartzler, H. D. (1971). J. Am. Chem. Soc. 93, 4527-4531.
Minutolo, F., Wilson, S. R. \& Katzenellenbogen, J. A. (1999). Acta Cryst. C55, 1016-1019.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Sulzbach, H. M., Bolton, E., Lenoir, D., von Ragué Schleyer, P. \& Schaefer, H. F. (1996). J. Am. Chem. Soc. 118, 9908-9914.

